The Amalgamation Property and a Problem of Henkin, Monk and Tarski

نویسنده

  • TAREK SAYED AHMED
چکیده

Using the fact that the class of representable cylindric algebras of infinite dimension fails to have the amalgamation property, we solve an open problem in the monograph “Cylindric Algebras, Part I” by Henkin, Monk and Tarski. Our result applies to other algebras of logic, namely Pinter’s substitution algebras and Halmo’s quasi-polyadic algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Amalgamation Property for Various Algebraic Logics

We show that a natural class of representable algebras (of logic) has the super amalgamation property. Applications of this results are given. In particular, questions originally posed by Tarski, Henkin, Monk and Pigozzi are answered. Several techniques for failure of various forms of the amalgamation property are appropriately modified, proving new results. Answers to open questions in the rec...

متن کامل

The Super Amalgamation Property via Neat Embeddings, and a Problem of Henkin and Monk

We give a sufficient condition for a class of representable cylindric algebras to have the super amalgamation property. We show that the class of representable algebras (RCAα) does not satisfy this condition when α > 1, but if we restrict ourselves to the class of dimension complemented algebras (Dcα) then this condition is satisfied when α ≥ ω. Hence Dcα’s super amalgamate with respect to RCAα...

متن کامل

A Confirmation of a Conjecture of Tarski

We confirm a conjecture of Tarski on cylindric algebra. We confirm an old conjecture of Tarski on neat reducts of cylindric algebras. The significance of the notion of neat reducts in connection to the representation theory for cylindric algebras is well known. Indeed a classical result of Henkin, the so-called Neat Embedding Theorem says that the representable algebras in the sense of [1] 3.1....

متن کامل

Free Boolean algebras with closure operators and a conjecture of Henkin , Monk , and Tarski ∗

We characterize the finite-dimensional elements of a free cylindric algebra. This solves Problem 2.10 in [Henkin, Monk, Tarski: Cylindric Algebras, North-Holland, 1971 and 1985]. We generalize the characterization to quasivarieties of Boolean algebras with operators in place of cylindric algebras. Free algebras play an important role in universal algebra, see e.g. AndrékaJónsson-Németi [2]. Fre...

متن کامل

Notions of Density That Imply Representability in Algebraic Logic

Henkin and Tarski proved that an atomic cylindric algebra in which every atom is a rectangle must be representable (as a cylindric set algebra). This theorem and its analogues for quasi-polyadic algebras with and without equality are formulated in Henkin-Monk-Tarski 1985]. We introduce a natural and more general notion of rectangular density that can be applied to arbitrary cylindric and quasi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009